Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Plant Commun ; : 100893, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38581128

RESUMO

Transitory starch is an important carbon source in leaves, and its biosynthesis and metabolism are closely related to grain yield and quality. The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice (Oryza sativa) yield and quality are unclear. Here, we showed that OsLESV and OsESV1, the rice orthologs of AtLESV and AtESV1, are associated with transitory starch biosynthesis in rice. The total starch and amylose contents in leaves and endosperm were significantly reduced, and the final grain quality and yield were compromised in oslesv and osesv1 single and oslesv esv1 double mutants. Further, we found that OsLESV and OsESV1 bind to starch and that this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain. Importantly, OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis, GBSSI, GBSSII, and PPDKB, and maintain their protein stability and activity levels. OsLESV and OsESV1 also assist in targeting GBSSI and GBSSII from plastid stroma to starch granules. Overexpressing GBSSI, GBSSII, and PPDKB partly rescued the phenotypic defects of the oslesv and osesv1 mutants. Thus, we demonstrated that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice. These findings enhance our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how transitory starch metabolism affects rice grain quality and yield, providing useful information for the genetic improvement of rice grain quality and yield.

2.
BMC Plant Biol ; 24(1): 196, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494545

RESUMO

BACKGROUND: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS: The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS: The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.


Assuntos
Endosperma , Oryza , Endosperma/metabolismo , Amido/metabolismo , Sementes/genética , Grão Comestível/genética , Homeostase , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Nat Commun ; 15(1): 1134, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326370

RESUMO

Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Mapeamento Cromossômico , Oryza/genética , Locos de Características Quantitativas/genética , Fenótipo , Sementes/genética
4.
Physiol Plant ; 176(2): e14226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410873

RESUMO

Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Agricultura , Fenômenos Químicos , Metaloides/metabolismo , Metaloides/toxicidade , Metais Pesados/toxicidade , Plantas/metabolismo , Solo , Poluentes do Solo/toxicidade
5.
Plant Dis ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240657

RESUMO

Heilongjiang is the largest rice-producing province in China, with annual yield of 28.9 million tons cultivated on 3.8 million hectares (Liu et al. 2021). During field surveys from July to August (2021-2022), symptoms of wilting were observed on rice panicles across Baoqing county (46.32°N, 132.20°E), Shuangyashan city, Heilongjiang province, China. Disease incidence ranged from 10 to 35%, and yield losses were estimated to be 5 to 20% over 7 surveyed fields of 18.5 ha in total. Initially, infected panicles exhibited carmine to brownish spots at the flowering and early grain-filling stages, which gradually merged into large and irregular lesions and spread to the entire panicle surface. Eventually, panicles became wilting and decayed at the ripening stage. To identify the etiological agent, thirty-five symptomatic panicles were collected randomly from 35 plants at different positions in 7 fields. The fragments (approximately 3 mm2) were dissected from margins of individual lesions, surface-disinfested with 70% ethanol for 30 s followed by 2% sodium hypochlorite for 2 min, and rinsed three times in sterilized water. The pieces were then dried and placed onto half-strength potato dextrose agar (PDA) supplemented with 50 µg/mL of streptomycin sulfate. After incubation at 28°C for 4 days, nineteen cultures were obtained and purified using the single-spore isolation method. On PDA plates, the colonies produced fluffy and cottony aerial mycelia and were white to yellowish with deep-yellow to red-brown pigments. The microconidia were hyaline, elliptical or clavate, zero to one septum, measuring 6.3 to 19.2 × 2.6 to 5.1 µm in size (n = 50). On carnation leaf agar (CLA), the macroconidia were thick-walled, falcate to almost straight, three to five septa, apical cell hooked to tapering, basal cell foot-shaped, measuring 27.4 to 47.8 × 3.6 to 5.4 µm in size (n = 50). No chlamydospore was observed. The internal transcribed spacer (ITS) region of ribosomal RNA, translation elongation factor (TEF-1α) gene, and ß-tubulin (ß-TUB) gene were amplified and sequenced using primers ITS1/ITS4 (White et al. 1990), EF1/EF2 (O'Donnell 2000), and T1/T22 (O'Donnell and Cigelnik 1997) from three representative isolates (PJ58, PJ69 and PJ83), respectively. The obtained sequences were deposited in GenBank (accession nos. ON527509, OQ772202 and OQ777725 for ITS; ON573222, OQ784926 and OQ784927 for TEF-1α; ON573223, OQ784928 and OQ784929 for ß-TUB, respectively). BLASTn analysis revealed 99.8 to 100% homology with the corresponding sequences of Fusarium kyushuense (MH892849 for ITS, AB674297 for TEF-1α, and GQ915442 for ß-TUB, respectively) in GenBank. Maximum likelihood phylogeny based on the concatenated sequences of ITS, TEF-1α and ß-TUB grouped three representative isolates in the F. kyushuense clade. Combined with the morphological and molecular characteristics, the fungus was identified to be F. kyushuense. Pathogenicity of the three isolates of F. kyushuense was evaluated on a susceptible rice cultivar Nanjing 46 at the booting stage. The upper part of a healthy panicle was inoculated by injecting 2 ml of a conidial suspension (1 × 106 spore/ml) obtained from a 7-day-old PDA culture of each isolate. The negative control was treated with sterile distilled water. The experiment was performed thrice with ten replicated plants for each treatment. All plants were placed in a humid chamber at 25°C with a 12-h photoperiod and 80% relative humidity. Twenty days after inoculation, it was found that the inoculated panicles showed typical reddish to brownish lesions, whereas control plants remained symptomless. Pathogens were reisolated from the artificially inoculated panicles and confirmed by morphological and molecular tests, fulfilling Koch's postulates. In recent years, this species has been associated with stalk rot and ear rot of maize (Cao et al. 2021; Wang et al. 2014) and wilt of tobacco (Wang et al. 2013). Also, it was mentioned as a producer of mycotoxins, especially trichothecenes and HT-2 toxin (Varga et al. 2016). To our knowledge, this is the first report of F. kyushuense causing panicle wilting on rice in China. The appropriate control strategies should be made to reduce the risk of disease due to food security concerns and potential threats to rice production.

6.
Rice (N Y) ; 17(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228921

RESUMO

As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.

7.
Plant Biotechnol J ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245899

RESUMO

Head rice yield (HRY) measures rice milling quality and determines final grain yield and commercial value. Here, we report that two major quantitative trait loci for milling quality in rice, qMq-1 and qMq-2, represent allelic variants of Waxylv /Waxyb (hereafter Wx) encoding Granule-Bound Starch Synthase I (GBSSI) and Alkali Spreading Value ALKc /ALKb encoding Soluble Starch Synthase IIa (SSIIa), respectively. Complementation and overexpression transgenic lines in indica and japonica backgrounds confirmed that Wx and ALK coordinately regulate HRY by affecting amylose content, the number of amylopectin branches, amyloplast size, and thus grain filling and hardness. The transcription factor OsDOF18 acts upstream of Wx and ALK by activating their transcription. Furthermore, rice accessions with Wxb and ALKb alleles showed improved HRY over those with Wxlv and ALKc . Our study not only reveals the novel molecular mechanism underlying the formation of HRY but also provides a strategy for breeding rice cultivars with improved HRY.

8.
Plants (Basel) ; 12(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068705

RESUMO

High temperatures accelerate the accumulation of storage material in seeds, often leading to defects in grain filling. However, the mechanisms regulating grain filling at high temperatures remain unknown. Here, we want to explore the quality factors influenced by the environment and have identified a LATE EMBROYGENESIS ABUNDANT gene, OsLEA1b, a heat-stress-responsive gene in rice grain filling. OsLEA1b is highly expressed in the endosperm, and its coding protein localizes to the nucleus and cytoplasm. Knock-out mutants of OsLEA1b had abnormal compound starch granules in endosperm cells and chalky endosperm with significantly decreased grain weight and grain number per panicle. The oslea1b mutants exhibited a lower proportion of short starch chains with degrees of polymerization values from 6 to 13 and a higher proportion of chains with degrees from 14 to 48, as well as significantly lower contents of starch, protein, and lipid compared to the wild type. The difference was exacerbated under high temperature conditions. Moreover, OsLEA1b was induced by drought stress. The survival rate of oslea1b mutants decreased significantly under drought stress treatment, with significant increase in ROS levels. These results indicate that OsLEA1b regulates starch biosynthesis and influences rice grain quality, especially under high temperatures. This provides a valuable resource for genetic improvement in rice grain quality.

9.
Microorganisms ; 11(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37764119

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR) is an adaptive immune system that defends most archaea and many bacteria from foreign DNA, such as phages, viruses, and plasmids. The link between the CRISPR-Cas system and the optimum growth temperature of thermophilic bacteria remains unclear. To investigate the relationship between the structural characteristics, diversity, and distribution properties of the CRISPR-Cas system and the optimum growth temperature in thermophilic bacteria, genomes of 61 species of thermophilic bacteria with complete genome sequences were downloaded from GenBank in this study. We used CRISPRFinder to extensively study CRISPR structures and CRISPR-associated genes (cas) from thermophilic bacteria. We statistically analyzed the association between the CRISPR-Cas system and the optimum growth temperature of thermophilic bacteria. The results revealed that 59 strains of 61 thermophilic bacteria had at least one CRISPR locus, accounting for 96.72% of the total. Additionally, a total of 362 CRISPR loci, 209 entirely distinct repetitive sequences, 131 cas genes, and 7744 spacer sequences were discovered. The average number of CRISPR loci and the average minimum free energy (MFE) of the RNA secondary structure of repeat sequences were positively correlated with temperature whereas the average length of CRISPR loci and the average number of spacers were negatively correlated. The temperature did not affect the average number of CRISPR loci, the average length of repeats, or the guanine-cytosine (GC) content of repeats. The average number of CRISPR loci, the average length of the repeats, and the GC content of the repeats did not reflect temperature dependence. This study may provide a new basis for the study of the thermophilic bacterial adaptation mechanisms of thermophilic bacteria.

10.
Front Plant Sci ; 14: 1222288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554558

RESUMO

3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon chain length of VLCFAs. However, a comprehensive study of KCSs in Oryza sativa has not been reported yet. In this study, we identified 22 OsKCS genes in rice, which are unevenly distributed on nine chromosomes. The OsKCS gene family is divided into six subclasses. Many cis-acting elements related to plant growth, light, hormone, and stress response were enriched in the promoters of OsKCS genes. Gene duplication played a crucial role in the expansion of the OsKCS gene family and underwent a strong purifying selection. Quantitative Real-time polymerase chain reaction (qRT-PCR) results revealed that most KCS genes are constitutively expressed. We also revealed that KCS genes responded differently to exogenous cadmium stress in japonica and indica background, and the KCS genes with higher expression in leaves and seeds may have functions under cadmium stress. This study provides a basis for further understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.

11.
J Adv Res ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399924

RESUMO

INTRODUCTION: Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES: In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS: We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS: Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION: Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.

12.
Microorganisms ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374889

RESUMO

ß-glucosidase derived from microorganisms has wide industrial applications. In order to generate genetically engineered bacteria with high-efficiency ß-glucosidase, in this study two subunits (bglA and bglB) of ß-glucosidase obtained from the yak rumen were expressed as independent proteins and fused proteins in lactic acid bacteria (Lactobacillus lactis NZ9000). The engineered strains L. lactis NZ9000/pMG36e-usp45-bglA, L. lactis NZ9000/pMG36e-usp45-bglB, and L. lactis NZ9000/pMG36e-usp45-bglA-usp45-bglB were successfully constructed. These bacteria showed the secretory expression of BglA, BglB, and Bgl, respectively. The molecular weights of BglA, BglB, and Bgl were about 55 kDa, 55 kDa, and 75 kDa, respectively. The enzyme activity of Bgl was significantly higher (p < 0.05) than that of BglA and BglB for substrates such as regenerated amorphous cellulose (RAC), sodium carboxymethyl cellulose (CMC-Na), desiccated cotton, microcrystalline cellulose, filter paper, and 1% salicin. Moreover, 1% salicin appeared to be the most suitable substrate for these three recombinant proteins. The optimum reaction temperatures and pH values for these three recombinant enzymes were 50 °C and 7.0, respectively. In subsequent studies using 1% salicin as the substrate, the enzymatic activities of BglA, BglB, and Bgl were found to be 2.09 U/mL, 2.36 U/mL, and 9.4 U/mL, respectively. The enzyme kinetic parameters (Vmax, Km, Kcat, and Kcat/Km) of the three recombinant strains were analyzed using 1% salicin as the substrate at 50 °C and pH 7.0, respectively. Under conditions of increased K+ and Fe2+ concentrations, the Bgl enzyme activity was significantly higher (p < 0.05) than the BglA and BglB enzyme activity. However, under conditions of increased Zn2+, Hg2+, and Tween20 concentrations, the Bgl enzyme activity was significantly lower (p < 0.05) than the BglA and BglB enzyme activity. Overall, the engineered lactic acid bacteria strains generated in this study could efficiently hydrolyze cellulose, laying the foundation for the industrial application of ß-glucosidase.

13.
Ecol Evol ; 13(6): e10181, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304364

RESUMO

Siraitia grosvenorii, an economically important plant species with high medicinal value, is endemic to subtropical China. To determine the population structure and origin of cultivated S. grosvenorii, we examined the variation in three chloroplast DNA regions (trnR-atpA, trnH-psbA, trnL-trnF) and two orthologous nuclear genes (CHS and EDL2) of S. grosvenorii in 130 wild individuals (selected from 13 wild populations across its natural distribution range) and 21 cultivated individuals using a phylogeographic approach. The results showed three distinct chloroplast lineages, which were restricted to different mountain ranges, and strong plastid phylogeographic structure. Our findings suggest that S. grosvenorii likely experienced ancient range expansion and survived in multiple refuges in subtropical China during glacial periods, resulting in population fragmentation in different mountainous areas. Our results also demonstrated that wild populations in Guilin (Guangxi, China) share the same gene pool as cultivated S. grosvenorii, suggesting that current cultivars were collected directly from local wild resources, consistent with the principles of "nearby domestication." The results of this study provide insights into improving the efficiency of S. grosvenorii breeding using a genetic approach and outline measures for the conservation of its genetic resources.

14.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047061

RESUMO

Dormancy is a complex agronomy phenotype controlled by multiple signaling and a key trait repressing pre-harvest sprouting (PHS). However, the signaling network of dormancy remains unclear. In this study, we used Zhonghua11 (ZH11) with a weak dormancy, and Introgression line (IL) with a strong dormancy to study the mechanism of hormones and reactive oxygen species (ROS) crosstalk regulating rice dormancy. The germination experiment showed that the germination rate of ZH11 was 76.86%, while that of IL was only 1.25%. Transcriptome analysis showed that there were 1658 differentially expressed genes (DEGs) between IL and ZH11, of which 577 were up-regulated and 1081 were down-regulated. Additionally, DEGs were mainly enriched in oxidoreductase activity, cell periphery, and plant hormone signal transduction pathways. Tandem mass tags (TMT) quantitative proteomics analysis showed 275 differentially expressed proteins (DEPs) between IL and ZH11, of which 176 proteins were up-regulated, 99 were down-regulated, and the DEPs were mainly enriched in the metabolic process and oxidation-reduction process. The comprehensive transcriptome and proteome analysis showed that their correlation was very low, and only 56 genes were co-expressed. Hormone content detection showed that IL had significantly lower abscisic acid (ABA) contents than the ZH11 while having significantly higher jasmonic acid (JA) contents than the ZH11. ROS content measurement showed that the hydrogen peroxide (H2O2) content of IL was significantly lower than the ZH11, while the production rate of superoxide anion (O2.-) was significantly higher than the ZH11. These results indicate that hormones and ROS crosstalk to regulate rice dormancy. In particular, this study has deepened our mechanism of ROS and JA crosstalk regulating rice dormancy and is conducive to our precise inhibition of PHS.


Assuntos
Oryza , Espécies Reativas de Oxigênio/metabolismo , Oryza/genética , Oryza/metabolismo , Transcriptoma , Proteoma/metabolismo , Dormência de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo
15.
BMC Plant Biol ; 23(1): 154, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36944951

RESUMO

BACKGROUND: Hybridization is generally considered an important creative evolutionary force, yet this evolutionary process is still poorly characterized in karst plants. In this study, we focus on natural hybridization in yellow Camellia species, a group of habitat specialists confined to karst/non-karst habitats in southwestern China. RESULTS: Based on population genome data obtain from double digest restriction-site associated DNA (ddRAD) sequencing, we found evidence for natural hybridization and introgression between C. micrantha and C. flavida, and specifically confirmed their hybrid population, C. "ptilosperma". Ecophysiological results suggested that extreme hydraulic traits were fixed in C. "ptilosperma", these being consistent with its distinct ecological niche, which lies outside its parental ranges. CONCLUSION: The identified hybridization event is expected to have played a role in generating novel variation during, in which the hybrid population displays different phenological characteristics and novel ecophysiological traits associated with the colonization of a new niche in limestone karst.


Assuntos
Camellia , Theaceae , Camellia/genética , Evolução Biológica , Hibridização Genética , Ecossistema
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675133

RESUMO

Corydalis saxicola Bunting (CSB), whose common name in Chinese is Yanhuanglian, is a herb in the family Papaveraceae. When applied in traditional Chinese medicine, it is used to treat various diseases including hepatitis, abdominal pain, and bleeding haemorrhoids. In addition, Corydalis saxicola Bunting injection (CSBI) is widely used against acute and chronic hepatitis. This review aims to provide up-to-date information on the botanical distribution, description, traditional uses, phytochemistry, pharmacology, and clinical applications of CSB. A comprehensive review was implemented on studies about CSB from several scientific databases, such as SciFinder, Elsevier, Springer, ACS Publications, Baidu Scholar, CNKI, and Wanfang Data. Phytochemical studies showed that 81 chemical constituents have been isolated and identified from CSB, most of which are alkaloids. This situation indicates that these alkaloids would be the main bioactive substances and that they have antitumour, liver protective, antiviral, and antibacterial pharmacological activities. CSBI can not only treat hepatitis and liver cancer but can also be used in combination with other drugs. However, the relationships between the traditional uses and modern pharmacological actions, the action mechanisms, quality standards, and the material basis need to be implemented in the future. Moreover, the pharmacokinetics of CSBI in vivo and the toxicology should be further investigated.


Assuntos
Alcaloides , Corydalis , Medicamentos de Ervas Chinesas , Hepatite , Humanos , Corydalis/química , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Hepatite/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
17.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499684

RESUMO

Pyruvate kinase (PK) is one of the three rate-limiting enzymes of glycolysis, and it plays a pivotal role in energy metabolism. In this study, we have identified 10 PK genes from the rice genome. Initially, these genes were divided into two categories: cytoplasmic pyruvate kinase (PKc) and plastid pyruvate kinase (PKp). Then, an expression analysis revealed that OsPK1, OsPK3, OsPK4, OsPK6, and OsPK9 were highly expressed in grains. Moreover, PKs can form heteropolymers. In addition, it was found that ABA significantly regulates the expression of PK genes (OsPK1, OsPK4, OsPK9, and OsPK10) in rice. Intriguingly, all the genes were found to be substantially involved in the regulation of rice grain quality and yield. For example, the disruption of OsPK3, OsPK5, OsPK7, OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6, and OsPK10 decreased the 1000-grain weight and the seed setting rate, respectively. Further, the disruption of OsPK4, OsPK6, OsPK8, and OsPK10 through the CRISPR/Cas9 system showed an increase in the content of total starch and a decrease in protein content compared to the WT. Similarly, manipulations of the OsPK4, OsPK8, and OsPK10 genes increased the amylose content. Meanwhile, the grains of all CRISPR mutants and RNAi lines, except ospk6, showed a significant increase in the chalkiness rate compared to the wild type. Overall, this study characterizes the functions of all the genes of the PK gene family and shows their untapped potential to improve rice yield and quality traits.


Assuntos
Oryza , Oryza/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo
18.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432867

RESUMO

Zinc (Zn) is an essential micronutrient for rice, but it is toxic at a high concentration, especially in acid soils. It is yet unknown which genes regulate Zn tolerance in rice. In the present study, a genome-wide association study (GWAS) was performed for Zn tolerance in rice at the seedling stage within a rice core collection, named Ting's core collection, which showed extensive phenotypic variations in Zn toxicity with high-density single-nucleotide polymorphisms (SNPs). A total of 7 and 19 quantitative trait loci (QTL) were detected using root elongation (RE) and relative root elongation (RRE) under high Zn toxicity, respectively. Among them, 24 QTL were novel, and qRRE15 was located in the same region where 3 QTL were reported previously. In addition, qRE4 and qRRE9 were identical. Furthermore, we found eight candidate genes that are involved in abiotic and biotic stress, immunity, cell expansion, and phosphate transport in the loci of qRRE8, qRRE9, and qRRE15. Moreover, four candidate genes, i.e., Os01g0200700, Os06g0621900, Os06g0493600, and Os06g0622700, were verified correlating to Zn tolerance in rice by quantitative real time-PCR (qRT-PCR). Taken together, these results provide significant insight into the genetic basis for Zn toxicity tolerance and tolerant germplasm for developing rice tolerance to Zn toxicity and improving rice production in Zn-contaminated soils.

19.
Front Microbiol ; 13: 1004454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212817

RESUMO

Fusarium proliferatum is the principal etiological agent of rice spikelet rot disease (RSRD) in China, causing yield losses and fumonisins contamination in rice. The intraspecific variability and evolution pattern of the pathogen is poorly understood. Here, we performed whole-genome resequencing of 67 F. proliferatum strains collected from major rice-growing regions in China. Population structure indicated that eastern population of F. proliferatum located in Yangtze River with the high genetic diversity and recombinant mode that was predicted as the putative center of origin. Southern population and northeast population were likely been introduced into local populations through gene flow, and genetic differentiation between them might be shaped by rice-driven domestication. A total of 121 distinct genomic loci implicated 85 candidate genes were suggestively associated with variation of fumonisin B1 (FB1) production by genome-wide association study (GWAS). We subsequently tested the function of five candidate genes (gabap, chsD, palA, hxk1, and isw2) mapped in our association study by FB1 quantification of deletion strains, and mutants showed the impact on FB1 production as compared to the wide-type strain. Together, this is the first study to provide insights into the evolution and adaptation in natural populations of F. proliferatum on rice, as well as the complex genetic architecture for fumonisins biosynthesis.

20.
Plant Commun ; 3(6): 100463, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36258666

RESUMO

Starch and storage proteins are the main components of rice (Oryza sativa L.) grains. Despite their importance, the molecular regulatory mechanisms of storage protein and starch biosynthesis remain largely elusive. Here, we identified a rice opaque endosperm mutant, opaque3 (o3), that overaccumulates 57-kDa proglutelins and has significantly lower protein and starch contents than the wild type. The o3 mutant also has abnormal protein body structures and compound starch grains in its endosperm cells. OPAQUE3 (O3) encodes a transmembrane basic leucine zipper (bZIP) transcription factor (OsbZIP60) and is localized in the endoplasmic reticulum (ER) and the nucleus, but it is localized mostly in the nucleus under ER stress. We demonstrated that O3 could activate the expression of several starch synthesis-related genes (GBSSI, AGPL2, SBEI, and ISA2) and storage protein synthesis-related genes (OsGluA2, Prol14, and Glb1). O3 also plays an important role in protein processing and export in the ER by directly binding to the promoters and activating the expression of OsBIP1 and PDIL1-1, two major chaperones that assist with folding of immature secretory proteins in the ER of rice endosperm cells. High-temperature conditions aggravate ER stress and result in more abnormal grain development in o3 mutants. We also revealed that OsbZIP50 can assist O3 in response to ER stress, especially under high-temperature conditions. We thus demonstrate that O3 plays a central role in rice grain development by participating simultaneously in the regulation of storage protein and starch biosynthesis and the maintenance of ER homeostasis in endosperm cells.


Assuntos
Endosperma , Oryza , Endosperma/genética , Endosperma/metabolismo , Oryza/genética , Oryza/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...